Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142076, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670506

RESUMO

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.

2.
Int J Biol Macromol ; 260(Pt 2): 129275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242408

RESUMO

Adsorption-based treatment of sulfate contaminated water sources present challenges due to its favourable hydration characteristics. Herein, a copper-modified granular chitosan-based biocomposite (CHP-Cu) was prepared and characterized for its sulfate adsorption properties at neutral pH via batch equilibrium and fixed-bed column studies. The CHP-Cu adsorbent was characterized by complementary methods: spectroscopy (IR, Raman, X-ray photoelectron), thermal gravimetry analysis (TGA) and pH-based surface charge analysis. Sulfate adsorption at pH 7.2 with CHP-Cu follows the Sips isotherm model with a maximum adsorption capacity (407 mg/g) that exceeds most reported values of granular biosorbents at similar conditions. For the dynamic adsorption study, initial sulfate concentration, bed height, and flow rate were influential parameters governing sulfate adsorption. The Thomas and Yoon-Nelson models yield a sulfate adsorption capacity (146 mg/g) for the fixed bed system at optimized conditions. CHP-Cu was regenerated over 5 cycles (33 % to 31 %) with negligible Cu-leaching. The adsorbent also displays excellent sulfate uptake properties, regenerability, and sustainable adsorbent properties for effective point-of-use sulfate remediation in aqueous media near neutral pH (7.2). This sulfate remediation strategy is proposed for other oxyanion systems relevant to contaminated environmental surface and groundwater resources.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Cobre/química , Sulfatos , Poluentes Químicos da Água/química , Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
3.
Chemosphere ; 349: 140874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061562

RESUMO

Orthophosphate (Pi) remediation from effluent serves to address global water security by preventing eutrophication. Herein, chitosan (C), alginate (Alg) and three respective metal systems (Fe3+, Al3+, Cu2+) were used to prepare binary (BMC) or ternary (TMC) metal composite adsorbents. Their physicochemical properties were analyzed through XPS, IR and TGA, while the adsorption properties of the composites were characterized via adsorption isotherms and single-point experiments in saline environmental water. Al-composites formed Al-O complexes, while Fe- and Cu-composites formed in the presence of the biopolymer backbone FeO(OH) and Cu2(OH)3NO3, respectively. While Al-composites showed the highest bound water fraction (up to 16%), the Cu-composites (Cu-TMC-N, CuC-BMC-N; where N = nitrate) revealed the lowest water content. Alginate-based binary composites showed slightly higher water content, as compared to ternary and binary chitosan composites. Among the four materials (Al-TMC-N, Fe-TMC-N, Cu-TMC-N and CuC-BMC-N), the Al-TMC showed the highest Pi selectivity over sulfate, along with high Pi removal-% even in a binary mixture (sulfate + orthophosphate) despite the presence of competitive anion species. Upon spiking saline groundwater samples with low Pi (5 mg/L) that contains 2060 or 6030 mg/g sulfate, Al-TMC-N showed the highest Pi selectivity, followed by Fe-TMC-N. This trend in adsorption of Pi among the various composites is understood based on the HSAB principle for the conditions employed in this study. Removal efficiencies of Pi above 60% in Well 1 (ca. 2000 mg/L sulfate) and above 30% in Well 3 (ca. 6030 mg/L sulfate). Herein, environmentally compatible and sustainable composite adsorbents were prepared that reveal selective Pi recovery from (highly) saline groundwater that can mitigate eutrophication in aqueous media.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Fosfatos , Quitosana/química , Poluentes Químicos da Água/análise , Metais , Água/química , Sulfatos , Alginatos/química , Adsorção , Cinética
4.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992564

RESUMO

The context of this study responds to the need for sorbent technology development to address the controlled removal of inorganic sulfate (SO42-) from saline water and the promising potential of chitosan as a carrier system for organosulfates in pharmaceutical and nutraceutical applications. This study aims to address the controlled removal of sulfate using chitosan as a sustainable biopolymer platform, where a modular synthetic approach was used for chitosan bead preparation that displays tunable sulfate uptake. The beads were prepared via phase-inversion synthesis, followed by cross-linking with glutaraldehyde, and impregnation of Ca2+ ions. The sulfate adsorption properties of the beads were studied at pH 5 and variable sulfate levels (50-1000 ppm), where beads with low cross-linking showed moderate sulfate uptake (35 mg/g), while cross-linked beads imbibed with Ca2+ had greater sulfate adsorption (140 mg/g). Bead stability, adsorption properties, and the point-of-zero charge (PZC) from 6.5 to 6.8 were found to depend on the cross-linking ratio and the presence of Ca2+. The beads were regenerated over multiple adsorption-desorption cycles to demonstrate the favorable uptake properties and bead stability. This study contributes to the development of chitosan-based adsorbent technology via a modular materials design strategy for the controlled removal of sulfate. The results of this study are relevant to diverse pharmaceutical and nutraceutical applications that range from the controlled removal of dextran sulfate from water to the controlled release of chondroitin sulfate.


Assuntos
Quitosana/química , Águas Salinas/química , Sulfatos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Água/química , Adsorção , Cálcio/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Reagentes de Ligações Cruzadas/química , Glutaral/química , Concentração de Íons de Hidrogênio , Cinética , Microesferas , Espectroscopia Fotoeletrônica , Termogravimetria
5.
Polymers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640585

RESUMO

Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the "best-fit" for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...